⚠️ Adding numbers under the root sign H

"The Root Addition Error"

Number & Proportion

The Mistake in Action

Simplify $\sqrt{9 + 16}$

Wrong: $\sqrt{9 + 16} = \sqrt{9} + \sqrt{16} = 3 + 4 = 7$

🧠 Why It Happens

Students wrongly extend the rule $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$ to addition.

The Fix

$\sqrt{a + b} \neq \sqrt{a} + \sqrt{b}$ — This is a critical rule!

The correct approach: $$\sqrt{9 + 16} = \sqrt{25} = 5$$

Quick check: $\sqrt{9} + \sqrt{16} = 3 + 4 = 7$, but $\sqrt{25} = 5 \neq 7$

What IS true:

  • $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$
  • $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$
  • $\sqrt{a + b} = \sqrt{a} + \sqrt{b}$

🔍 Spot the Mistake

Can you identify where this student went wrong?

$\sqrt{9 + 16}$

$= \sqrt{9} + \sqrt{16}$

$= 7$

Click on the line that contains the error.

📚 Related Topics

Learn more about the underlying maths: